Adapting Data-Independent Acquisition for Mass Spectrometry-Based Protein Site-Specific N-Glycosylation Analysis.

نویسندگان

  • Kuan-Ting Pan
  • Chen-Chun Chen
  • Henning Urlaub
  • Kay-Hooi Khoo
چکیده

A hallmark of protein N-glycosylation is extensive heterogeneity associated with each glycosylation site. In human cells, the constituent glycoforms differ mostly in numerous ways of extensions from an invariable trimannosyl core and terminal modifications. The efficient identification of these glycoforms at the glycopeptide level by mass spectrometry (MS) requires a precursor sampling technique that is not dictated by signal intensity or by preset targets during MS2 data acquisition. We show here that the recently developed data-independent acquisition (DIA) approach is best suited to this demanding task. It allows postacquisition extraction of glycopeptide-specific fragment-ion chromatograms to be aligned with that of precursor MS1 ion by nanoLC elution time. For any target glycoprotein, judicious selection of the most favorable MS1/MS2 transitions can first be determined from prior analysis of a purified surrogate standard that carries similar site-specific glycosylation but may differ in its exact range of glycoforms. Since the MS2 transitions to be used for extracting DIA data is common to that glycosylation site and not dictated by a specific MS1 value, our workflow applies equally well to the identification of both targeted and unexpected glycoforms. Using a case example, we show that, in targeted mode, it identified more site-specific glycoforms than the more commonly used data-dependent acquisition method when the amount of the target glycoprotein was limited in a sample of high complexity. In discovery mode, it allows detection, with supporting MS2 evidence, of under-sampled glycoforms and of those that failed to be identified by searching against a predefined glycan library owing to unanticipated modifications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of a recombinant influenza vaccine candidate using complementary LC-MS methods.

Influenza vaccination is recognized as the most effective method for reducing morbidity and mortality due to seasonal influenza. To improve vaccine supply and to increase flexibility in vaccine manufacturing, cell culture-based vaccine production has emerged to overcome limitations of egg-based production. The switch of production system and the need for annual re-evaluation of vaccines for the...

متن کامل

Reliable determination of site-specific in vivo protein N-glycosylation based on collision-induced MS/MS and chromatographic retention time.

Site-specific glycopeptide mapping for simultaneous glycan and peptide characterization by MS is difficult because of the heterogeneity and diversity of glycosylation in proteins and the lack of complete fragmentation information for either peptides or glycans with current fragmentation technologies. Indeed, multiple peptide and glycan combinations can readily match the same mass of glycopeptid...

متن کامل

Simultaneous and extensive site-specific N- and O-glycosylation analysis in protein mixtures.

Extensive site-specific glycosylation analysis of individual glycoproteins is difficult due to the nature and complexity of glycosylation in proteins. In protein mixtures, these analyses are even more difficult. We present an approach combining nonspecific protease digestion, nanoflow liquid chromatography, and tandem mass spectrometry (MS/MS) aimed at comprehensive site-specific glycosylation ...

متن کامل

Structural analysis of a glycoprotein by liquid chromatography-mass spectrometry and liquid chromatography with tandem mass spectrometry. Application to recombinant human thrombomodulin.

Using recombinant human thrombomodulin (rhTM) expressed in Chinese hamster ovary (CHO) cells, we studied the structural analysis of a glycoprotein by liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography with tandem mass spectrometry (LC-MS-MS). First, we analyzed the structure of both the O- and N-linked glycans in rhTM by oligosaccharide mapping using LC-MS equipped with a...

متن کامل

Analysis of site-specific N-glycan remodeling in the endoplasmic reticulum and the Golgi.

The hallmark of N-linked protein glycosylation is the generation of diverse glycan structures in the secretory pathway. Dynamic, non-template-driven processes of N-glycan remodeling in the endoplasmic reticulum and the Golgi provide the cellular setting for structural diversity. We applied newly developed mass spectrometry-based analytics to quantify site-specific N-glycan remodeling of the mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 89 8  شماره 

صفحات  -

تاریخ انتشار 2017